Hybrid monomer design for unifying conflicting polymerizability, recyclability, and performance properties

by Changxia Shi, Zi-Chen Li, Lucia Caporaso, Luigi Cavallo, et.al.
Year: 2021 DOI: https://doi.org/10.1016/j.chempr.2021.02.003

Extra Information

Chem.

Abstract

Intrinsically recyclable polymers represent a circular economy approach to address plastics problems. However, the design of such circular polymers is challenged by unyielding trade-offs between the monomer’s polymerizability and the polymer’s depolymerizability and performance properties. Here, we introduce a hybrid monomer design strategy that synergistically couples a high ceiling temperature (HCT) sub-structure for high polymerizability and performance properties with a low ceiling temperature (LCT) sub-structure for high depolymerizability and recyclability within the same monomer structure. Thus, structural hybridization between HCT ε-caprolactone and LCT g-butyrolactone led to an offspring [3.2.1]bicyclic lactone, which exhibits both high polymerizability and depolymerizability, otherwise conflicting properties in a typical monomer. The resulting polymer becomes a high-performance material, and thermal transition temperatures are 200C higher and tensile modulus 103 higher than its parent polymers. These results demonstrate that the HCT/LCT hybrid monomer strategy is a powerful approach for designing circular polymers where conflicting properties must be exploited and unified.