Intermolecular Interactions Mediated Nonflammable Electrolyte for High-Voltage Lithium Metal Batteries in Wide Temperature

by Yeguo Zou, Gang Liu, Yuqi Wan, Qian Li, Zheng Ma, Dongming Yin, Yao Liang, Zhen Cao, Luigi Cavallo, et.al.
Year: 2023 DOI: https://doi.org/10.1002/aenm.202300443

Extra Information

Advanced Energy Materials.

Abstract

High-voltage lithium metal batteries are the most promising energy storage technology due to their excellent energy density (>400 Wh kg−1). However, the oxidation decomposition of conventional carbonate-based electrolytes at the high-potential cathode, the detrimental reaction between the lithium anode and electrolyte, particularly the uncontrolled lithium dendrite growth, always lead to a severe capacity decay and/or flammable safety issues, hindering their practical applications. Herein, a solvation structure engineering strategy based on tuning intermolecular interactions is proposed as a strategy to design a novel nonflammable fluorinated electrolyte. Using this approach, this work shows superior cycling stability in a wide temperature range (−40 °C to 60 °C) for a 4.4 V-class LiNi0.8Co0.1Mn0.1O2 (NCM811)-based Li-metal battery. By coupling the high-loading of NCM811 cathode (3.0 mAh cm−2) and a controlled amount of lithium anode (twofold excess of Li deposition on Cu, Cu@Li) (N/P = 2), the Cu@Li || NCM811 full cell can cycle more than 162 cycles with high-capacity retention of 80%. This work finds that the change of the coordination environment of Li+ with solvent and PF6− by tuning intermolecular interaction is an effective method to stabilize the electrolyte and electrode performance. These discoveries can provide a pathway for electrolyte design in metal ion batteries.