Weak Solvent–Solvent Interaction Enables High Stability of Battery Electrolyte

by Yuqi Wang, Zhen Cao, Zheng Ma, Gang Liu, Haoran Cheng, Yeguo Zou, Luigi Cavallo, Qian Li, Jun Ming
Year: 2023 DOI: https://doi.org/10.1021/acsenergylett.3c00052

Extra Information

ACS Energy Lett.

Abstract

Electrolytes play an important role in transporting metal ions (e.g., Li+) in metal ion batteries, while understanding the relationship between the electrolyte properties and behaviors is still challenging. Herein, we detect the existence of weak solvent–solvent interactions in electrolytes by nuclear magnetic resonance (NMR), particularly discovering that such interactions have a significant function of stabilizing the electrolytes, which has never been reported before. As a paradigm, we renovated the understanding of the role of ethylene carbonate (EC) solvent in the lithium-ion battery electrolyte. We find that the EC solvent can stabilize the linear carbonate solvent electrolyte, particularly the diethyl carbonate (DEC) electrolyte, by the weak intermolecular interactions, enhancing the energy difference between the orbitals of the Li+(EC)x(DEC)y complex, in turn demonstrating strong capability against reduction. Our viewpoint was further demonstrated in other metal ion batteries (e.g., Na+, K+), whose discovery is significant for designing electrolytes and in-depth understanding of the battery performance.